

VWR Taq DNA Polymerase

With 10x Extra Buffer (Mg²⁺ free and Triton free)

Conc.: 5 units/µl

7 312056 228417

Cat. No.: 733-1304 (500 Units)

-	Size Units	Polymorasa		MgCl₂ 25 mM	
ID No. Cap colour	-	5101600 Purple	5100650 Red	5575801 Yellow	
733-1304	500	100 µl	1.5 ml	1.5 ml	
733-1305	1000	2 x 100 µl	2 x 1.5 ml	2 x 1.5 ml	
733-1822 sample	50	1 x 10 µl	1.5 ml	1.5 ml	

Store at -20 °C. Reagent for in vitro laboratory use only

General Description

VWR Taq DNA Polymerase is a thermostable recombinant DNA polymerase, which exhibits very high activity in primer extension and other molecular biology applications. The enzyme is isolated from *Thermus aquaticus* and has a molecular weight of approximately 94 kDa.

VWR Taq DNA Polymerase has both a 5' \rightarrow 3' DNA polymerase and a 5' \rightarrow 3' exonuclease activity. The enzyme lacks a 3' \rightarrow 5' exonuclease activity (no proofreading ability). VWR Taq DNA Polymerase leaves an A' overhang, which makes the enzyme ideal for TA cloning.

10x Extra Buffer, Mg²⁺ free and Triton free Tris-HCl pH 8.5, KCl.

Storage and Dilution Buffer

Enzyme is supplied in 20 mM Tris-HCl pH 8.5, 100 mM KCl, 0.1 mM EDTA, 1 mM DTT, 0.5 % Tween $^{\$}$ 20, 0.5 % NP40, 50 % glycerol.

Quality Control

Each lot of VWR Taq DNA Polymerase is tested for contaminating activities, with no trace of endonuclease activity, nicking activity or exonuclease activity.

Unit Definition

One unit is defined as the amount of polymerase that incorporates 10 nmoles of dNTPs into acid-precipitable DNA in 30 minutes at 72 °C under standard assay conditions.

Protocol

This protocol serves as a guideline for PCR. Optimal reaction conditions such as incubation times, temperatures, and amount of template DNA may vary and must be determined individually.

Notes:

- Set up reaction mixtures in an area separate from that used for DNA preparation or product analysis.
- When using Mg²⁺ free buffers, the addition of MgCl₂ to the reaction is imperative because Mg²⁺ is required for polymerase activity. Use 25 mM MgCl₂ to adjust the Mg²⁺ concentration according to Table 1.

Table 1. Additional volume (μl) of MgCl2 per 50 μl reaction

Final MgCl ₂ conc. in reaction (mM)	0.5	1.0	1.5	2.0	2.5	3.0	3.5	4.0	4.5
Volume of 25 mM MgCl ₂ (μl)	1	2	3	4	5	6	7	8	9

- Thaw 10x Buffer, dNTP mix, and primer solutions. It is important to thaw the solutions completely (some buffers need to reach room temperature) and mix thoroughly before use to avoid localized concentrations of salts. Keep all components on ice. The polymerase is provided in glycerol and does not need thawing. Keep it at -20 °C at all times.
- Prepare a master mix according to Table 2. The master mix typically contains all the components needed for extension except the template DNA.

Table 2. Reaction components: Master mix and template DNA

Component	Vol./reaction*	Final concentration*
10x Buffer	5 µl	1x
25 mM MgCl ₂	3 µl (1 – 10 µl)	1.5 mM (0.5 – 5 mM)
dNTP mix (12.5 mM each)	0.8 μΙ	0.2 mM of each dNTP
Primer A (10 µM)	1 μΙ (0.5 – 5 μΙ)	0.2 μM (0.1 – 1.0 μM)
Primer B (10 µM)	1 μl (0.5 – 5 μl)	0.2 μM (0.1 – 1.0 μM)
Taq DNA Pol.	0.2 µl (0.2 – 1 µl)	1 unit (1 – 5 units)
PCR-grade H₂O	Χμl	-
Template DNA	Χμl	genomic DNA: 50 ng (10 – 500 ng) plasmid DNA: 0.5 ng (0.1 – 1 ng) bacterial DNA: 5 ng (1 – 10 ng)
TOTAL volume	50 µl	-

^{*} Suggested starting conditions; theoretically used conditions in brackets

- Mix the master mix thoroughly and dispense appropriate volumes into reaction tubes. Mix gently, e.g., by pipetting the master mix up and down a few times.
- Add template DNA to the individual tubes containing the master mix.
- Program the thermal cycler according to the manufacturer's instructions.

For maximum yield and specificity, temperatures and cycling times should be optimized for each new target template or primer pair.

6. Place the tubes in the thermal cycler and start the reaction.

Version: VWR 05/2017

Three-step PCR Program

Cycles	Duration of cycle	Temperature
1	2 minutes ^a	95 °C
25 – 35	20 – 30 seconds ^b	95 °C
	20 – 40 seconds ^c	50 – 65 °C
	30 seconds ^d	72 °C
1	5 minutes ^e	72 °C

^{a.} Initial denaturation step (optional).

- b. Denaturation step: This step is the first regular cycling event and consists of heating the reaction to 95 °C for 20 -30 seconds. It causes melting of the DNA template by disrupting the hydrogen bonds between complementary bases, yielding single-stranded DNA molecules.
- ^{c.} Annealing step: The reaction temperature is lowered to 50 - 65 °C for 20 - 40 seconds allowing annealing of the primers to the single-stranded DNA template. Typically, the annealing temperature is about 3 - 5 °C below the T_m of the primers used.
- ^{d.} Extension/elongation step: Taq polymerase has its optimal activity at 72 °C. At this step the DNA polymerase synthesizes a new DNA strand complementary to the DNA template strand. The extension time depends on the length of the DNA fragment to be amplified. As a rule of thumb, at its optimum temperature the DNA polymerase will polymerize a thousand bases per minute.
- e Final elongation: This single step is occasionally performed at a temperature of 72 °C for 5 minutes after the last PCR cycle to ensure that any remaining singlestranded DNA is fully extended.

Related Products

Description	Cat. No.			
VWR Taq DNA Polymerase				
VWR Glycerol Free Taq DNA Polymerase (1000 units) with 10x Key Buffer with 10x Extra Buffer	733-1817			
VWR Taq DNA Polymerase (500 units) with 10x Key Buffer with 10x Extra Buffer	733-1301			
VWR Taq DNA Polymerase (500 units) with 10x Extra Buffer (Mg ²⁺ -free and Triton-free)	733-1304			
VWR Taq DNA Polymerase (1000 units) with 10x Key Buffer (Tween-free) with 10x Extra Buffer (Triton-free)	733-1307			
VWR Taq DNA Polymerase (500 units) with 10x Key Buffer (Mg ²⁺ -free)	733-1311			
VWR Red Taq DNA Polymerase (2500 units) with 10x Key Buffer with 10x Extra Buffer	733-1323			
VWR Taq DNA Polymerase Master Mix*				
VWR Taq DNA Pol. 1.1x Master Mix, 1.5 mM MgCl ₂ final conc. (2500 reactions)	733-1314			
VWR Taq DNA Pol. 2x Master Mix, 1.5 mM MgCl ₂ final conc. (2500 reactions)	733-1316			
VWR Red Taq DNA Pol. 1.1x Master Mix, 1.5 mM MgCl ₂ final conc. (2500 reactions)	733-1318			
VWR Red Taq DNA Pol. 2x Master Mix, 1.5 mM MgCl ₂ final conc. (2500 reactions)	733-1320			
VWR TEMPase Hot Start DNA Polymerase				
VWR TEMPase Hot Start DNA Polymerase (500 units) with 10x Key Buffer with 10x Combination Buffer	733-1331			
VWR Glycerol Free TEMPase DNA Polymerase (500 units) with 10x Key Buffer	733-2555			
VWR TEMPase Hot Start Master Mix**	•			
VWR TEMPase Hot Start 2x Master Mix K, 1.5 mM MgCl ₂ final conc. (2500 reactions)	733-2582			
VWR Blue TEMPase Hot Start 2x Master Mix K, 1.5 mM MgCl ₂ final conc. (2500 reactions)	733-2585			
VWR Multiplex Master Mix				
VWR Multiplex 2x Master Mix, (2500 reactions)	733-2569			
VWR High Fidelity DNA Polymerase				
VWR AccuPOL DNA Polymerase (250 units) with 10x Key Buffer	733-1324			
VWR AccuPOL DNA Polymerase (250 units) with 10x Key Buffer (Mg ²⁺ free and Tween free)	733-1328			
VWR PCR accessories				
Betaine Enhancer Solution 5 M, 5 ml (500 reactions)	733-1361			
dNTP Mix, 40 mM (10 mM of each dATP, dCTP, dGTP & dTTP) (40 µmol, 2x 500 µl)	733-1363			
dNTP Set, 100 mM of each dATP, dCTP, dGTP & dTTP (4x 25 µmol, 4x 250 µl)	733-1364			
VWR PCR grade water (6 x 5 ml)	733-2573			
VWR Loading Buffer Red (5 x 1 ml) – available in 4 different colors *Also available with 2 mM MgCl ₂	733-2574			

Tween® 20 is a registered trademark of ICI Americas, Inc.

^{*}Also available with 2 mM MgCl₂

**Also available as 2x Master Mix C based on Combination Buffer